2、1930年數理邏輯的狀況

      1930年前,整個數學界是非常樂觀的:希爾伯特的思想占統治地位;數學是建立在集合論和數理邏輯兩塊基石之上;康托爾的樸素集合論已被公理集合論所代替,從而消除了悖論;選擇公理是一個很好的工具,數學中許多部門都要用到它;連續統假設仍然是懸案,不過希爾伯特多次覺得自己已接近解決這個難題,看來前景是樂觀的。

      大部分數學可以建立在謂詞演算的基礎上,而一階謂詞演算的公理系統是無矛盾的,盡管其完全性仍有待證明;整個數學的基本理論是自然數的算術和實數理論,它們都已經公理化。

      這些公理系統應該是無矛盾的、完全的,如果它們能夠得證,并且集合論公理系統也能得到同樣的結果,那么整個數學就比較牢靠了。

      為了不使一小撮直覺主義者指手劃腳、評頭品足,希爾伯特提出他的計劃:把理論系統形式化,然后通過有限多步證明它們沒有矛盾。他信心十足,在1930年9月東普魯士哥尼斯堡的科學會會議上,他批判了不可知論。

      1928年希爾伯特提出四個問題:

      1、分析的無矛盾性。1924年阿克曼和1927年馮·諾依曼的工作使希爾伯特相信只要一些純算術的初等引理即可證明。1930年夏天,哥德爾開始研究這個問題,他不理解希爾伯特為什么要直接證明分析的無矛盾性。哥德爾認為應該把困難分解:用有限主義的算術證明算術的無矛盾性,再用算術的無矛盾性證明分析的無矛盾性,哥德爾由此出發去證明算術的無矛盾性而得出不完全性定理。

      2、更高級數學的無矛盾性,特別是選擇公理的無矛盾性。這個問題后來被哥德爾在1938年以相對的方式解決。

      3、算術及分析形式系統的完全性。這個問題在1930年秋天哥尼斯堡的會議上,哥德爾已經提出了一個否定的解決,這個問題的否定成為數理邏輯發展的轉折點。

      4、一階謂詞邏輯的完全性。這個問題已被哥德爾在1930年完全解決。

      這樣一來,哥德爾的工作把希爾伯特的方向扭轉,使數理邏輯走上全新的道路。

      3、1930年哥德爾的兩項主要貢獻

      (1) 完全性定理:哥德爾的學位論文《邏輯函數演算的公理的完全性》解決了一階謂詞演算的完全性問題。羅素與懷德海建立了邏輯演算的公理系統的無矛盾性及完全性(也許還包括不那么重要的獨立性)。所謂完全性就是,每一個真的邏輯數學命題都可以由這個公理系統導出,也就是可證明。

      命題演算的完全性已由美國數學家波斯特在1921年給出證明,而一階謂詞演算的完全性—直到1929年才由哥德爾給出證明。但是哥德爾認為,斯柯侖在1922年的文章中已隱含證明了命題演算的完全性,但是他沒有陳述這個結果,可能是他本人并沒有意識到這一點。

      (2) 哥德爾的不完全性定理:這是數理邏輯最重大的成就之一,是數理邏輯發展的一個里程碑和轉折點。哥德爾在研究過程中直接考慮悖論及解決悖論的方法,從而把第三次數學危機引導至另外一個方向上。

      哥德爾證明不完全性定理是從考慮數學分析的協調性問題開始的。1930年秋在哥尼斯堡會議上,他宣布了第一不完全性定理:一個包括初等數論的形式系統,如果是協調的,那就是不完全的。不久之后他又宣布:如果初等算術系統是協調的,則協調性在算術系統內不可證明。

      哥德爾的證明使用了“算術化”的方法。哥德爾說:“一個系統的公式……從外觀上看是原始符號的有窮序列……。不難嚴格地陳述,哪些原始符號的序列是合適公式,哪些不是;類似地,從形式觀點看來,證明也只不過是(具有某種確定性質的)一串公式的有窮序列”。因此,研究一個形式系統實際上就是研究可數個對象的集合。我們給每個對象配上一個數,這種把每一個對象配上一個數的方法稱為“哥德爾配數法”。哥德爾通過這些數反過來看原來形式系統的性質。

      哥德爾研究了46種函數和謂詞,哥德爾證明了他的前45個函數和謂詞都是原始遞歸的。但第46個謂詞為“X是一個可證公式的哥德爾數”。在對哥德爾配數的系統中,可以得到一個公式,它相當于:我是不可證的。所以這個句子是不可證的且是真的。所以系統中存在真語句而又不可證,也就是系統不完全。

      哥德爾的論文在1931年發表之后,立即引起邏輯學家的莫大興趣。它開始雖然使人們感到驚異不解,不久即得到廣泛承認,并且產生巨大的影響。

      哥德爾的證明對希爾伯特原來的計劃是一個巨大的打擊,因此把整個數學形式化的打算是注定要失敗的,因而邏輯主義和形式主義的原則是不能貫徹到底的;“希爾伯特計劃”中證明論的有限主義觀點必須修正,從而使證明論的要求稍稍放寬。1936年甘岑在容許超窮歸納的條件下證明了算術的無矛盾性,而倡導有限構造主義的直覺主義也不能解決問題;哥德爾的工具遞歸函數促進了遞歸函數論的系統研究,同時推動了不可判定問題的研究,開始出現遞歸論的新分支。

      哥德爾不完全定理的證明結束了關于數學基礎的爭論不休的時期,數學基礎的危機不那么突出表現出來。數理邏輯形成了一個帶有強技巧性的獨立學科,而絕大部分數學家仍然把自己的研究建立在樸素集合論或ZF公理集合論的基礎上。

      盡管集合論中存在矛盾,但這些矛盾大部分均可回避。研究這些矛盾,特別是集合論的矛盾變成數理邏輯學家的事業。另外一方面,直覺主義和構造主義數學雖然也有發展,但終究是一小部分,半個世紀以來,在數學中始終不占統治地位。因為矛盾也好、危機也好,根源在于無窮,但是數學中畢竟少不了無窮。歸根結蒂,數學終究是研究無窮的科學。
       

       
      黑人巨大精品欧美一区二区| 日产精品99久久久久久| 97久久精品无码一区二区| 国产精品www| 久久91精品综合国产首页| 欧美日韩一区二区在线观看视频| 精品调教CHINESEGAY| 麻豆精品久久久一区二区| 久久精品这里只有精99品| 亚洲精品美女久久久久99| 精品一区二区久久久久久久网站| 国产VA免费精品高清在线| 一本一本久久a久久精品综合麻豆 一本色道久久88综合日韩精品 | 国产福利精品一区二区| 91热成人精品国产免费| 高h视频在线观看| 一区二区精品在线| 中文字幕在线视频不卡 | 国产亚洲精品高清在线| 亚洲国产精品乱码一区二区| 亚洲国产精品无码久久一区二区| 999国内精品永久免费观看| 国产啪亚洲国产精品无码| 国产精品美女一区二区| 久久成人国产精品二三区| 在线精品国产一区二区三区| AAA级久久久精品无码片| 久久精品一区二区三区中文字幕| 99青草青草久热精品视频| 97久久精品人人澡人人爽| 69福利青草视频在线观看| 亚洲午夜精品久久久久久人妖| 日本一区二区在线看| 国产精品亚洲片在线va| 影音先锋在线资源资源网| 久久精品国产免费一区| 亚洲精品无码成人AAA片| 国产精品videossex白浆| 日韩精品亚洲人成在线观看| 国产精品无码国模私拍视频| 国产精品亚洲片在线观看不卡|