閔可夫斯基本人則因數學才能出眾,早有神童之名,后來更是優秀的數學家。他們兄弟三人都十分杰出,在哥尼斯堡曾經轟動一時。 1873年,閔可夫斯基進入艾爾斯塔特預科學校讀書。他思考敏捷,記憶力極佳,很快就表現出數學天賦。不僅如此,閔可夫斯基熟讀莎士比亞、席勒和歌德的作品,歌德的《浮士德》幾乎可以全文背誦。這和大雞慢啼的希爾伯特不同。八年的預科學校課程,閔可夫斯基只花了五年半就完成學業。因此,雖然閔可夫斯基比希爾伯特小兩歲,卻早一年畢業。當時德國大學可以自由選擇任何大學注冊。閔可夫斯基先進入當地的大學,不久就轉到柏林大學,三個學期后又回到哥尼斯堡大學。在大學期間,他曾先后受教于胡爾維茨、林德曼
、克羅內克爾、庫謨、weber、魏爾斯特拉斯和克希荷夫等人。在哥尼斯堡大學 ,閔可夫斯基和希爾伯特重逢,兩人志趣相投,結為終生的摯友。 1884年,年方25的數學家胡爾維茨來到哥尼斯堡大學當副教授,很快地便和閔可夫斯基及希爾伯特建立起友誼,共同的科學愛好把他們緊密地結合在一起。每天下午五點,都可以看見他們三人在蘋果園里散步,討論當前的數學問題,時而低頭苦思、時而滔滔不絕,時而爭辯,時而會心地哈哈大笑,旁人看來真是一群數學瘋子。然而,這些討論對他們各自的數學工作產生重要的影響。希爾伯特后來寫道:在無數次的散步中,我們三人探究了數學科學的每一個角落。胡爾維茨學識淵博,他總是我們的帶路人。大學期間,閔可夫斯基就曾因出色的數學工作而獲獎。 1881年,法國科學發出通告,懸賞求解一個數學難題:試證任何一個正整數都可以表成五平方數的和。年僅十的閔可夫斯基所做出的結果大大超過了原問題,然截稿日期已近,根據
比賽規則需譯為法文,但閔可夫斯基已經來不及,事已至此,他還是決定投稿一試。翌年,大獎揭曉,由十八歲的閔可夫斯基和英國著名數學家 henry smith 共同獲獎。閔可夫斯基再次轟動哥尼斯堡。1885年夏,閔可夫斯基在哥尼斯堡 大學取得博士學位。服過短暫的兵役后,1886 年被聘為波恩大學講師。1891年柏林大學的數學教授 kronecker 去世,引起德國各大學教授、副教授的變動。哥尼斯堡 大學副教授胡爾維茨 調到蘇黎世大學擔任數學教授,希爾伯特 則接任他的位置,閔可夫斯基則升為波恩大學副教授。1895年,希爾伯特 被克萊因網羅到哥廷根大學,閔可夫斯基就接任他在哥尼斯堡 大學的教授職位。
1896年,閔可夫斯基轉到蘇黎世大學和胡爾維茨 共事。物理學大師愛因斯坦 曾是他的學生。
1902年,閔可夫斯基也被克萊因網羅,加入哥廷根大學的數學大師之林,一直到他過世為止。閔可夫斯基在1897年結婚,他的妻子是哥尼斯堡附近一位皮革廠廠長的女兒。他們有兩女兒。
1909年1月10日,閔可夫斯基在正達創作力高峰時,突患急性闌尾炎,搶救無效,不幸于1月12日去世,年僅45歲。生前摯友希爾伯特 替他整理遺作,1911年出版《閔可夫斯基全集》。
閔可夫斯基的主要工作在數論、代數和數學物理上。在數論上,他對二次型進行了重要的研究。在1881年法國大獎中,閔可夫斯基深入鉆研了高斯、狄利克雷和愛因斯坦等人的論著。因為高斯曾在研究把一個整數分解為三個平方數之和時用了二元二次型的性質,閔可夫斯基由前人的工作中認識到把一個整數分解為五個平方數之和的方法與四元二次型有關。由此,他深入研究了n元二次型,建立了完整的理論體系。這樣一來,原題就很容易從更一般的理論中得出,閔可夫斯基交給法國科學院的論文長達140頁,遠遠超出了原題的范圍。
閔可夫斯基此后仍繼續研究n元二次型的理論。他透過三個不變量刻畫了有理系數二次型有理系數線性變換下的等價性,完成了實系數正定二次型的約化理論(1905),現稱“閔可夫斯基約化理論”。當閔可夫斯基用幾何方法研究n元二次型的約化問題時,獲得了十分精彩而清晰的結果。他把用這種方法建立起來的關于數的理論為“數的幾何”, 其中包括著名的閔克夫斯基原理。由這里又引導出他在“凸體幾何”方面的研究,這項研究的副產品就是著名的閔可夫斯基不等式:{σ(ak + bk)r}1/r ≦ {σakr}1/r + {σbkr}1/r。
"他在閔可夫斯基的數學工作找到了“相對論的整個武器庫”
閔可夫斯基早年就對數學物理有興趣,在波恩大學任職時,他就曾協助物理學家赫茲(hertz)研究電磁波的理論。1905年以后,他幾乎把所有的精力都放在電動力學上。
1907年,
閔可夫斯基體悟到可以用非歐空間的想法來理解洛侖茲和愛因斯坦的工作,他認為過去一直被認定是獨立的時間和空間的概念可以被結合在一個四維的時空結講中:ds2 = c2dt2 + dx2 + dy2 + dz2 這種結構后來被稱為“閔可夫斯基的世界”。據此,同一現象的不同描述能用簡單的數學方式表出。這些工作為狹義相對論提供了骨架。諾貝爾物理獎得主M.
波恩曾說,他在閔可夫斯基的數學工作找到了“相對論的整個武器庫”。閔可夫斯基在這方面的著述主要有1907年的 raum und zeit 和1909年的 zwei abhandlungen uer die grundgleichungen der elektrodynamik。
|